Analytical Methods
Statistical Analysis
import pandas as pd
import numpy as np
def analyze_volume_patterns(volume_data):
"""
Comprehensive volume analysis for manipulation detection
"""
# Calculate volume moving averages
volume_ma_7 = volume_data.rolling(window=7).mean()
volume_ma_30 = volume_data.rolling(window=30).mean()
# Detect volume spikes
volume_spikes = volume_data > (volume_ma_30 * 3)
# Calculate volume distribution
volume_distribution = {
'median': volume_data.median(),
'std': volume_data.std(),
'skewness': volume_data.skew(),
'kurtosis': volume_data.kurtosis()
}
return {
'spikes': volume_spikes.sum(),
'distribution': volume_distribution,
'manipulation_score': calculate_volume_manipulation_score(volume_data)
}Pattern Recognition
Anomaly Detection
Predictive Modeling
Performance Metrics
Last updated