Analytical Methods
Statistical Analysis
Time Series Analysis
Price Action Analysis
Moving average convergence/divergence
Volatility clustering detection
Trend strength measurement
Support/resistance identification
Volume Analysis Framework
import pandas as pd
import numpy as np
def analyze_volume_patterns(volume_data):
"""
Comprehensive volume analysis for manipulation detection
"""
# Calculate volume moving averages
volume_ma_7 = volume_data.rolling(window=7).mean()
volume_ma_30 = volume_data.rolling(window=30).mean()
# Detect volume spikes
volume_spikes = volume_data > (volume_ma_30 * 3)
# Calculate volume distribution
volume_distribution = {
'median': volume_data.median(),
'std': volume_data.std(),
'skewness': volume_data.skew(),
'kurtosis': volume_data.kurtosis()
}
return {
'spikes': volume_spikes.sum(),
'distribution': volume_distribution,
'manipulation_score': calculate_volume_manipulation_score(volume_data)
}
Correlation Analysis
Cross-Asset Correlation
Correlation with major cryptocurrencies
Sector-specific correlation patterns
Market cap correlation analysis
Liquidity correlation assessment
Pattern Recognition
Machine Learning Models
Behavioral Pattern Detection
Transaction pattern classification
Wallet behavior clustering
Social sentiment pattern recognition
Market cycle identification
Feature Engineering
def extract_features(project_data):
"""
Extract features for ML model input
"""
features = {
# Technical features
'price_volatility': calculate_volatility(project_data.prices),
'volume_trend': calculate_volume_trend(project_data.volumes),
'liquidity_ratio': project_data.liquidity / project_data.market_cap,
# Social features
'sentiment_score': project_data.social_sentiment,
'engagement_rate': project_data.social_engagement,
'viral_coefficient': project_data.viral_metrics,
# On-chain features
'holder_concentration': calculate_concentration(project_data.holders),
'transaction_diversity': analyze_tx_patterns(project_data.transactions),
'contract_complexity': assess_contract_complexity(project_data.contract)
}
return features
Pattern Categories
Legitimate Growth Patterns:
Organic user adoption curves
Sustainable development activity
Natural community growth
Balanced market participation
Suspicious Patterns:
Artificial pump sequences
Coordinated social campaigns
Manipulated trading volumes
Sudden liquidity withdrawals
Anomaly Detection
Detection Methodologies
Statistical Anomaly Detection
Z-score based outlier identification
Isolation forest algorithms
Local outlier factor analysis
Time-series anomaly detection
Behavioral Anomaly Detection
from sklearn.ensemble import IsolationForest
import numpy as np
class BehaviorAnomalyDetector:
def __init__(self):
self.model = IsolationForest(contamination=0.1, random_state=42)
def detect_anomalies(self, behavior_features):
"""
Detect anomalous behavior patterns
"""
# Normalize features
normalized_features = self.normalize_features(behavior_features)
# Fit model and predict anomalies
anomaly_scores = self.model.fit_predict(normalized_features)
# Calculate anomaly confidence
confidence_scores = self.model.score_samples(normalized_features)
return {
'anomalies': anomaly_scores == -1,
'confidence': confidence_scores,
'anomaly_count': np.sum(anomaly_scores == -1)
}
Real-time Monitoring
Alert Triggers:
Sudden behavior changes (>3 standard deviations)
Unusual transaction patterns
Abnormal social activity spikes
Unexpected liquidity movements
Predictive Modeling
Model Architecture
Ensemble Prediction Framework
Gradient boosting models for risk prediction
Neural networks for pattern recognition
Time series forecasting for trend prediction
Ensemble methods for improved accuracy
Model Training Pipeline
class KaizenPredictiveModel:
def __init__(self):
self.models = {
'risk_classifier': GradientBoostingClassifier(),
'price_predictor': LSTMModel(),
'sentiment_analyzer': TransformerModel(),
'anomaly_detector': AutoEncoder()
}
def train_ensemble(self, training_data):
"""
Train ensemble of models for comprehensive prediction
"""
for model_name, model in self.models.items():
# Prepare model-specific features
features = self.prepare_features(training_data, model_name)
# Train model
model.fit(features['X'], features['y'])
# Validate performance
self.validate_model(model, features['X_val'], features['y_val'])
def predict_risk(self, project_features):
"""
Generate comprehensive risk prediction
"""
predictions = {}
for model_name, model in self.models.items():
pred = model.predict(project_features[model_name])
predictions[model_name] = pred
# Ensemble prediction
final_prediction = self.ensemble_predict(predictions)
return final_prediction
Prediction Categories
Short-term Predictions (1-7 days):
Price movement direction
Volume trend changes
Social sentiment shifts
Immediate risk events
Medium-term Predictions (1-4 weeks):
Project sustainability assessment
Community growth projections
Development milestone predictions
Market position forecasts
Long-term Predictions (1-6 months):
Project viability assessment
Ecosystem integration potential
Competition analysis
Technology adoption forecasts
Performance Metrics
Model Performance Evaluation
Classification Metrics
Precision, Recall, F1-Score for risk classification
ROC-AUC for binary risk prediction
Matthews Correlation Coefficient for balanced assessment
Confusion matrix analysis for error patterns
Regression Metrics
def evaluate_prediction_performance(y_true, y_pred):
"""
Comprehensive performance evaluation for predictions
"""
metrics = {
'mse': mean_squared_error(y_true, y_pred),
'mae': mean_absolute_error(y_true, y_pred),
'r2': r2_score(y_true, y_pred),
'mape': mean_absolute_percentage_error(y_true, y_pred)
}
# Calculate custom metrics
metrics['directional_accuracy'] = calculate_directional_accuracy(y_true, y_pred)
metrics['risk_adjusted_accuracy'] = calculate_risk_adjusted_accuracy(y_true, y_pred)
return metrics
Business Impact Metrics
User Protection Metrics:
False positive rate (legitimate projects flagged as risky)
False negative rate (risky projects not detected)
Early warning effectiveness (detection before major events)
User satisfaction with risk assessments
Platform Performance:
Scoring accuracy over time
Model drift detection
Response time for new projects
Coverage of blockchain ecosystems
Continuous Improvement Framework
Model Monitoring:
Real-time performance tracking
Data drift detection
Concept drift identification
Automated retraining triggers
Feedback Integration:
User feedback incorporation
Expert review integration
Market outcome validation
Community input processing
Last updated