System Overview
Architectural Principles
Design Philosophy
Modularity-First Architecture Kaizen AI is built on a foundation of modularity, where each system component operates as an independent, specialized unit while maintaining seamless integration with the broader ecosystem. This architectural approach ensures scalability, maintainability, and flexibility in responding to the rapidly evolving Web3 landscape.
Core Design Principles:
Separation of Concerns
Each agent handles a specific domain of analysis (data collection, scoring, social intelligence, etc.)
Clear boundaries between data processing, analysis, and presentation layers
Independent scaling capabilities for different system components
Isolated failure domains to prevent cascade failures
Fault Tolerance and Resilience
Circuit breaker patterns for external API integrations
Graceful degradation when individual agents experience issues
Redundant data sources to ensure continuous operation
Automatic failover mechanisms for critical system components
Real-Time Processing
Event-driven architecture for immediate response to blockchain events
Streaming data pipelines for continuous analysis updates
Low-latency communication between agents and user interfaces
Optimized caching strategies for frequently accessed data
Extensibility and Evolution
Plugin architecture for adding new analytical capabilities
Version-controlled agent interfaces for backward compatibility
Modular integration points for new blockchain networks
Future-proof design accommodating emerging Web3 technologies
Architectural Patterns
Microservices Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Data Agent │ │ Scoring Agent │ │ Social Intel │
│ │ │ │ │ Agent │
│ • Ethereum RPC │ │ • Risk Models │ │ • Sentiment │
│ • Solana RPC │ │ • ML Algorithms │ │ • Entity Recog │
│ • Event Streams │ │ • Pattern Recog │ │ • Manipulation │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└───────────────────────┼───────────────────────┘
│
┌─────────────────┐
│ Message Bus/MCP │
│ │
│ • Event Routing │
│ • Context Share │
│ • State Sync │
└─────────────────┘
│
┌───────────────────────┼───────────────────────┐
│ │ │
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Intel Agent │ │ Chat Agent │ │ API Gateway │
│ │ │ │ │ │
│ • Wallet Intel │ │ • NLP Engine │ │ • Auth Layer │
│ • Fund Tracking │ │ • Query Router │ │ • Rate Limiting │
│ • Entity Mapping│ │ • Response Gen │ │ • Load Balancer │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Event-Driven Communication
Blockchain Event → Data Agent → Event Processing → Multi-Agent Notification
↓
Event Store ← Message Queue → Scoring Agent
↓ ↓ ↓
Real-time UI ← WebSocket ← Updated Analysis
Layered Architecture Model
┌─────────────────────────────────────────────────────────────┐
│ Presentation Layer │
│ • Web UI (Next.js) • Mobile App • API Endpoints │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Application Layer │
│ • Chat Agent • Query Processing • User Management │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Business Layer │
│ • Scoring Engine • Risk Analysis • Social Intelligence │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Data Layer │
│ • Data Agent • Intel Agent • External Integrations │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Infrastructure Layer │
│ • Databases • Message Queues • Caching • Monitoring │
└─────────────────────────────────────────────────────────────┘
Modular Agent Framework
Agent Architecture Overview
Autonomous Agent Design Each agent in the Kaizen AI ecosystem operates as an autonomous unit with clearly defined responsibilities, input/output interfaces, and performance characteristics. This design enables independent development, testing, and deployment while maintaining system-wide coherence.
Agent Lifecycle Management
Agent Lifecycle:
Initialization → Configuration → Activation → Processing → Monitoring → Maintenance → Shutdown
↑ ↓
←←←←←←←←←←←←←←←←← Health Checks & Updates ←←←←←←←←←←←←←←←←←←←←←
Data Agent Architecture
Core Responsibilities
Real-time blockchain data collection and normalization
Multi-chain transaction monitoring and analysis
Smart contract event parsing and interpretation
Market data aggregation and validation
Technical Implementation
// Data Agent Architecture Schema
{
"agent_id": "data_agent_v2.1",
"capabilities": {
"ethereum": {
"rpc_endpoints": ["alchemy", "infura", "local_geth"],
"event_filters": ["Transfer", "Approval", "Swap"],
"block_processing": "real_time",
"contract_interaction": "full_trace"
},
"solana": {
"rpc_endpoints": ["solana_rpc", "quicknode"],
"program_monitoring": ["token_program", "dex_programs"],
"account_watching": "real_time",
"transaction_parsing": "full_detail"
}
},
"output_format": "standardized_blockchain_events",
"processing_rate": "1000_events_per_second",
"latency_target": "<500ms"
}
Data Processing Pipeline
Raw Blockchain Data → Validation → Normalization → Enrichment → Event Publication
↓ ↓ ↓ ↓ ↓
Format Check → Schema Valid → Standard Format → Context Add → Message Queue
Scoring Agent Architecture
Analytical Engine Design The Scoring Agent combines rule-based logic with machine learning models to generate comprehensive risk assessments and opportunity scores.
Model Integration Framework
Input Data → Feature Engineering → Model Ensemble → Score Calculation → Confidence Assessment
↓ ↓ ↓ ↓ ↓
Multi-Source → Standardization → [ML Models Array] → Weighted Score → Statistical Conf
Machine Learning Pipeline
# Scoring Agent ML Architecture
class ScoringEngine:
def __init__(self):
self.models = {
"honeypot_detector": XGBoostClassifier(),
"rug_pull_predictor": RandomForestRegressor(),
"social_sentiment": TransformerModel(),
"liquidity_analyzer": LinearRegression(),
"whale_behavior": LSTMNetwork()
}
def calculate_score(self, project_data):
feature_vector = self.feature_engineering(project_data)
model_predictions = {}
for model_name, model in self.models.items():
prediction = model.predict(feature_vector)
confidence = model.predict_proba(feature_vector)
model_predictions[model_name] = {
"prediction": prediction,
"confidence": confidence
}
final_score = self.ensemble_scoring(model_predictions)
return final_score
Social Intelligence Agent Architecture
Multi-Platform Integration
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Twitter │ │ Telegram │ │ Discord │ │ Farcaster │
│ API v2 │ │ Bot API │ │ Gateway │ │ Hub │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘
│ │ │ │
└─────────────────┼─────────────────┼─────────────────┘
│ │
┌─────────────────┐ │
│ Data Aggregator │ │
└─────────────────┘ │
│ │
┌─────────────────┐ │
│ NLP Processing │ │
│ • Sentiment │ │
│ • Entity Recog │ │
│ • Topic Model │ │
└─────────────────┘ │
│ │
┌─────────────────┐ │
│ Manipulation │ │
│ Detection │ │
└─────────────────┘ │
│ │
└─────────────────┘
Natural Language Processing Pipeline
Raw Social Data → Text Preprocessing → Feature Extraction → Analysis Models → Insight Generation
↓ ↓ ↓ ↓ ↓
Multi-Platform → Cleaning/Tokens → Vector Embedding → [NLP Models] → Structured Output
Intel Agent Architecture
Intelligence Aggregation Framework
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Arkham Intel │ │ On-Chain Track │ │ Behavior Patt │
│ • Entity Labels │ │ • Fund Flows │ │ • Wallet Clust │
│ • Wallet Tags │ │ • Tx Analysis │ │ • Risk Patterns │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└───────────────────────┼───────────────────────┘
│
┌─────────────────┐
│ Intel Fusion │
│ • Correlation │
│ • Attribution │
│ • Risk Scoring │
└─────────────────┘
│
┌─────────────────┐
│ Intelligence │
│ Database │
└─────────────────┘
Chat Agent Architecture
Conversational AI Framework
User Query → Intent Classification → Context Retrieval → Agent Routing → Response Generation
↓ ↓ ↓ ↓ ↓
Natural Lang → Query Type → Historical Data → Best Agent → Formatted Response
Multi-LLM Integration
# Chat Agent LLM Router
class ChatRouter:
def __init__(self):
self.llm_models = {
"gpt4": {"strength": "complex_analysis", "cost": "high"},
"claude": {"strength": "technical_detail", "cost": "medium"},
"mistral": {"strength": "speed", "cost": "low"}
}
def route_query(self, query, context):
complexity = self.assess_complexity(query)
urgency = self.assess_urgency(context)
if complexity == "high" and urgency == "low":
return self.llm_models["gpt4"]
elif complexity == "medium":
return self.llm_models["claude"]
else:
return self.llm_models["mistral"]
Model Context Protocol (MCP)
Protocol Overview
What is Model Context Protocol? Model Context Protocol (MCP) is a standardized communication framework that enables seamless context sharing and coordination between AI agents. It provides a common language for agents to exchange information, maintain state consistency, and collaborate on complex analytical tasks.
Core Protocol Features:
Context Preservation: Maintains conversation and analysis context across agent interactions
State Synchronization: Ensures consistent data state across distributed agent network
Event Coordination: Coordinates agent responses to blockchain events and user queries
Resource Management: Optimizes computational resource allocation across agents
Protocol Architecture
Communication Layer Design
┌─────────────────────────────────────────────────────────────┐
│ MCP Protocol Stack │
├─────────────────────────────────────────────────────────────┤
│ Application Layer: Agent-Specific Logic │
├─────────────────────────────────────────────────────────────┤
│ Context Layer: Shared State & Memory Management │
├─────────────────────────────────────────────────────────────┤
│ Coordination Layer: Event Routing & Synchronization │
├─────────────────────────────────────────────────────────────┤
│ Transport Layer: Message Queue & Delivery Guarantees │
├─────────────────────────────────────────────────────────────┤
│ Network Layer: TCP/WebSocket/HTTP Connections │
└─────────────────────────────────────────────────────────────┘
Context Sharing Mechanism
{
"context_id": "analysis_session_12345",
"timestamp": "2025-06-19T10:30:00Z",
"initiating_agent": "chat_agent",
"context_data": {
"user_query": "Analyze PEPE token security",
"user_profile": {
"risk_tolerance": "moderate",
"experience_level": "intermediate"
},
"analysis_scope": {
"contract_address": "0x6982508145454ce325ddbe47a25d4ec3d2311933",
"network": "ethereum",
"depth": "comprehensive"
}
},
"shared_state": {
"project_metadata": {...},
"preliminary_scores": {...},
"active_alerts": [...]
},
"routing_table": {
"data_agent": "active",
"scoring_agent": "queued",
"social_agent": "standby",
"intel_agent": "standby"
}
}
Message Passing Framework
Event-Driven Messaging
Event Generation → Message Creation → Protocol Wrapping → Agent Routing → Context Update
↓ ↓ ↓ ↓ ↓
Trigger Source → Structured Data → MCP Envelope → Target Selection → State Sync
Message Types and Patterns
// MCP Message Type Definitions
interface MCPMessage {
messageId: string;
timestamp: number;
sourceAgent: AgentId;
targetAgent: AgentId | "broadcast";
messageType: MessageType;
priority: Priority;
context: ContextData;
payload: any;
deliveryGuarantees: DeliveryOptions;
}
enum MessageType {
QUERY_REQUEST = "query_request",
ANALYSIS_RESULT = "analysis_result",
CONTEXT_UPDATE = "context_update",
EVENT_NOTIFICATION = "event_notification",
STATUS_UPDATE = "status_update",
ERROR_REPORT = "error_report"
}
enum Priority {
CRITICAL = 1, // Immediate processing required
HIGH = 2, // Process within 1 second
NORMAL = 3, // Standard queue processing
LOW = 4 // Background processing acceptable
}
Context Management
Shared Memory Architecture
┌─────────────────────────────────────────────────────────────┐
│ Distributed Context Store │
├─────────────────────────────────────────────────────────────┤
│ Session Context: User interactions & preferences │
├─────────────────────────────────────────────────────────────┤
│ Analysis Context: Project data & ongoing evaluations │
├─────────────────────────────────────────────────────────────┤
│ Market Context: Real-time conditions & trends │
├─────────────────────────────────────────────────────────────┤
│ Historical Context: Past analyses & outcome validation │
└─────────────────────────────────────────────────────────────┘
Context Lifecycle Management
Context Creation → Population → Sharing → Updates → Archival → Cleanup
↓ ↓ ↓ ↓ ↓ ↓
Session Start → Data Load → Multi-Agent → Real-time → Storage → Memory Free
Inter-Agent Communication
Communication Patterns
Synchronous Communication Used for immediate response requirements:
Chat Agent ──RPC Call──→ Data Agent ──Response──→ Chat Agent
↓ ↓
User Query Immediate Answer
Asynchronous Communication Used for complex analysis and background processing:
User Request → Chat Agent → Message Queue → Multiple Agents → Result Aggregation → User Response
↓ ↓ ↓ ↓
Queue Job → Agent Processing → Partial Results → Combined Output
Publish-Subscribe Pattern Used for event distribution and real-time updates:
Blockchain Event → Data Agent (Publisher) → Event Bus → Subscribed Agents → Individual Processing
↓
[Scoring, Social, Intel, Chat]
Coordination Mechanisms
Workflow Orchestration
# Example Agent Coordination Workflow
class AnalysisOrchestrator:
def __init__(self):
self.agents = {
"data": DataAgent(),
"scoring": ScoringAgent(),
"social": SocialAgent(),
"intel": IntelAgent()
}
async def comprehensive_analysis(self, contract_address):
# Phase 1: Data Collection
raw_data = await self.agents["data"].collect_project_data(contract_address)
# Phase 2: Parallel Analysis
tasks = [
self.agents["scoring"].analyze_risk(raw_data),
self.agents["social"].analyze_sentiment(raw_data),
self.agents["intel"].analyze_intelligence(raw_data)
]
results = await asyncio.gather(*tasks)
# Phase 3: Result Synthesis
comprehensive_score = self.synthesize_results(results)
return comprehensive_score
State Consistency Management
Agent State Update → Version Control → Conflict Detection → Resolution → Broadcast Update
↓ ↓ ↓ ↓ ↓
Local Change → Timestamp → Compare States → Merge/Reject → Notify Agents
Error Handling and Recovery
Agent Failure Detection → Circuit Breaker → Failover → Recovery → State Resync
↓ ↓ ↓ ↓ ↓
Health Monitor → Block Requests → Backup Agent → Restart → Data Sync
Performance Optimization
Load Balancing Strategies
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Load Balancer │ │ Agent Pool │ │ Resource Monitor│
│ │ │ │ │ │
│ • Round Robin │───▶│ • Data Agent 1 │◀───│ • CPU Usage │
│ • Least Conn │ │ • Data Agent 2 │ │ • Memory Usage │
│ • Weighted │ │ • Data Agent 3 │ │ • Queue Depth │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Caching Mechanisms
Request → Cache Check → [Hit: Return Cached] / [Miss: Process + Cache] → Response
↓ ↓ ↓ ↓ ↓
User Query → Redis Lookup → Cached Response / Agent Processing → Store Result
Resource Allocation
# Dynamic Resource Allocation
class ResourceManager:
def __init__(self):
self.resource_pools = {
"cpu_intensive": ["scoring_agent", "intel_agent"],
"io_intensive": ["data_agent", "social_agent"],
"memory_intensive": ["chat_agent"]
}
def allocate_resources(self, workload_type, priority):
available_agents = self.get_available_agents(workload_type)
if priority == "high":
return self.allocate_dedicated_resources(available_agents)
else:
return self.allocate_shared_resources(available_agents)
Monitoring and Observability
System Health Monitoring
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Agent Metrics │ │ Communication │ │ Performance │
│ │ │ Metrics │ │ Metrics │
│ • Response Time │ │ • Message Rate │ │ • Throughput │
│ • Error Rate │ │ • Queue Depth │ │ • Latency │
│ • CPU/Memory │ │ • Delivery Rate │ │ • Success Rate │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└───────────────────────┼───────────────────────┘
│
┌─────────────────┐
│ Central Monitor │
│ • Dashboards │
│ • Alerts │
│ • Analytics │
└─────────────────┘
Distributed Tracing
User Request → [Trace ID] → Agent Chain → [Span Creation] → Result Assembly
↓ ↓ ↓ ↓ ↓
Request Init → Trace Context → Processing → Timing Data → Response
This comprehensive system overview provides the foundation for understanding how Kaizen AI's modular architecture enables scalable, reliable, and efficient crypto analysis across multiple blockchain networks and data sources.
Last updated