Core Components
Data Agent Architecture
Component Overview
The Data Agent serves as the foundational layer of Kaizen AI's analytical capabilities, responsible for real-time blockchain data collection, normalization, and initial processing across multiple networks. This component operates as a high-throughput, low-latency data pipeline that transforms raw blockchain events into structured, analyzable information.
Primary Responsibilities:
Multi-chain blockchain monitoring and event collection
Smart contract interaction analysis and state tracking
Market data aggregation from decentralized exchanges
Data validation, normalization, and enrichment
Real-time event streaming to downstream analytical components
Technical Architecture
Multi-Chain Data Collection Framework
┌─────────────────────────────────────────────────────────────────┐
│ Data Agent Core │
├─────────────────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Ethereum │ │ Solana │ │ Future │ │
│ │ Collector │ │ Collector │ │ Chains │ │
│ │ │ │ │ │ │ │
│ │• Geth RPC │ │• RPC Nodes │ │• Base │ │
│ │• Alchemy │ │• BigTable │ │• Polygon │ │
│ │• Infura │ │• Quicknode │ │• Arbitrum │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│ Data Processing Engine │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Validation │ │Normalization│ │ Enrichment │ │
│ │ Layer │ │ Layer │ │ Layer │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│ Event Distribution │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Message │ │ WebSocket │ │ Database │ │
│ │ Queue │ │ Streams │ │ Storage │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────────────┘
Ethereum Data Collection
RPC Node Management
interface EthereumCollector {
nodeEndpoints: RPCEndpoint[];
blockProcessing: BlockProcessor;
eventFilters: EventFilter[];
contractWatchers: ContractWatcher[];
}
class EthereumDataCollector {
private rpcPool: ConnectionPool;
private eventProcessor: EventProcessor;
private stateTracker: StateTracker;
constructor(config: EthereumConfig) {
this.rpcPool = new ConnectionPool({
endpoints: [
{ provider: "alchemy", priority: 1, maxConnections: 10 },
{ provider: "infura", priority: 2, maxConnections: 8 },
{ provider: "local_geth", priority: 3, maxConnections: 5 }
],
failoverStrategy: "round_robin",
healthCheck: "30s"
});
}
async collectBlockData(blockNumber: number): Promise<ProcessedBlock> {
const rawBlock = await this.rpcPool.getBlock(blockNumber);
const transactions = await this.processTransactions(rawBlock.transactions);
const events = await this.extractEvents(transactions);
return {
blockNumber,
timestamp: rawBlock.timestamp,
transactionCount: transactions.length,
processedTransactions: transactions,
extractedEvents: events,
gasMetrics: this.calculateGasMetrics(transactions)
};
}
}
Smart Contract Event Processing
// Event Filter Configuration
const eventFilters = {
erc20_transfers: {
topics: ["0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef"],
decoder: "Transfer(address,address,uint256)",
priority: "high"
},
uniswap_swaps: {
address: "0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f",
topics: ["0xd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822"],
decoder: "Swap(address,uint256,uint256,uint256,uint256,address)",
priority: "high"
},
liquidity_events: {
topics: ["0x4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f"],
decoder: "Mint(address,uint256,uint256)",
priority: "medium"
}
};
class EventProcessor {
async processEvent(rawEvent: RawEvent): Promise<ProcessedEvent> {
const eventSignature = rawEvent.topics[0];
const filter = this.getFilterBySignature(eventSignature);
if (!filter) return null;
const decodedEvent = this.decodeEvent(rawEvent, filter.decoder);
const enrichedEvent = await this.enrichEvent(decodedEvent);
return {
eventType: filter.type,
contractAddress: rawEvent.address,
blockNumber: rawEvent.blockNumber,
transactionHash: rawEvent.transactionHash,
decodedData: decodedEvent,
enrichmentData: enrichedEvent,
timestamp: Date.now(),
network: "ethereum"
};
}
}
Solana Data Collection
Program Monitoring Architecture
// Solana Data Collector Implementation
pub struct SolanaCollector {
rpc_client: RpcClient,
program_watchers: HashMap<Pubkey, ProgramWatcher>,
account_watchers: Vec<AccountWatcher>,
signature_subscribers: Vec<SignatureSubscriber>,
}
impl SolanaCollector {
pub async fn monitor_token_program(&self) -> Result<(), CollectorError> {
let token_program_id = spl_token::id();
// Subscribe to all token program interactions
let subscription = self.rpc_client
.program_subscribe(&token_program_id, None)
.await?;
while let Some(update) = subscription.next().await {
match update {
Ok(account_update) => {
self.process_account_update(account_update).await?;
},
Err(e) => {
log::error!("Subscription error: {}", e);
}
}
}
Ok(())
}
async fn process_transaction(&self, signature: &Signature) -> ProcessedTransaction {
let transaction = self.rpc_client
.get_transaction(signature, UiTransactionEncoding::JsonParsed)
.await
.unwrap();
let parsed_instructions = self.parse_instructions(&transaction);
let account_changes = self.analyze_account_changes(&transaction);
ProcessedTransaction {
signature: signature.to_string(),
block_time: transaction.block_time,
slot: transaction.slot,
instructions: parsed_instructions,
account_changes,
fee: transaction.meta.unwrap().fee,
}
}
}
Data Processing Pipeline
Validation Layer
class DataValidator:
def __init__(self):
self.schema_validators = {
"ethereum_transaction": EthereumTransactionSchema(),
"solana_transaction": SolanaTransactionSchema(),
"token_transfer": TokenTransferSchema(),
"swap_event": SwapEventSchema()
}
def validate_data(self, data: Dict, data_type: str) -> ValidationResult:
validator = self.schema_validators.get(data_type)
if not validator:
return ValidationResult(valid=False, error="Unknown data type")
try:
validated_data = validator.validate(data)
return ValidationResult(valid=True, data=validated_data)
except ValidationError as e:
return ValidationResult(valid=False, error=str(e))
def check_data_integrity(self, data: Dict) -> bool:
# Verify data consistency and completeness
required_fields = self.get_required_fields(data.get("type"))
for field in required_fields:
if field not in data or data[field] is None:
return False
# Additional integrity checks
return self.validate_timestamps(data) and self.validate_addresses(data)
Normalization Layer
interface NormalizedEvent {
id: string;
type: EventType;
network: Network;
contractAddress: string;
blockNumber: number;
timestamp: number;
data: Record<string, any>;
metadata: EventMetadata;
}
class DataNormalizer {
normalize(rawData: RawBlockchainData): NormalizedEvent[] {
const normalizedEvents: NormalizedEvent[] = [];
for (const event of rawData.events) {
const normalized = {
id: this.generateEventId(event),
type: this.mapEventType(event),
network: rawData.network,
contractAddress: event.address.toLowerCase(),
blockNumber: event.blockNumber,
timestamp: this.normalizeTimestamp(event),
data: this.normalizeEventData(event),
metadata: this.extractMetadata(event)
};
normalizedEvents.push(normalized);
}
return normalizedEvents;
}
private normalizeEventData(event: RawEvent): Record<string, any> {
switch (event.type) {
case "Transfer":
return {
from: event.data.from.toLowerCase(),
to: event.data.to.toLowerCase(),
amount: this.normalizeAmount(event.data.value),
token: event.address.toLowerCase()
};
case "Swap":
return {
tokenIn: event.data.tokenIn.toLowerCase(),
tokenOut: event.data.tokenOut.toLowerCase(),
amountIn: this.normalizeAmount(event.data.amountIn),
amountOut: this.normalizeAmount(event.data.amountOut),
recipient: event.data.to.toLowerCase()
};
default:
return event.data;
}
}
}
Performance Characteristics
Throughput Specifications
performance_targets:
ethereum:
events_per_second: 1000
block_processing_latency: "<500ms"
transaction_processing: "50ms_avg"
memory_usage: "<2GB_per_instance"
solana:
transactions_per_second: 2000
account_update_latency: "<200ms"
instruction_processing: "10ms_avg"
memory_usage: "<1.5GB_per_instance"
general:
data_validation_time: "<50ms"
normalization_time: "<100ms"
database_write_time: "<200ms"
error_rate_target: "<0.1%"
Scaling Configuration
const scalingConfig = {
horizontal_scaling: {
min_instances: 2,
max_instances: 10,
scale_up_threshold: "cpu_usage > 70% for 5min",
scale_down_threshold: "cpu_usage < 30% for 15min",
target_requests_per_instance: 500
},
connection_pooling: {
ethereum_rpc: {
pool_size: 20,
max_retries: 3,
timeout: "30s",
keepalive: true
},
solana_rpc: {
pool_size: 15,
max_retries: 5,
timeout: "10s",
keepalive: true
}
},
caching_strategy: {
block_cache_ttl: "1h",
transaction_cache_ttl: "30m",
contract_metadata_ttl: "24h",
max_cache_size: "5GB"
}
};
Scoring Engine Design
Component Overview
The Scoring Engine represents the analytical heart of Kaizen AI, combining traditional rule-based logic with advanced machine learning models to generate comprehensive risk assessments. This component processes multi-dimensional data inputs to produce the signature Kaizen Score (0-100) along with detailed risk breakdowns and confidence intervals.
Core Capabilities:
Multi-factor risk assessment with weighted scoring
Ensemble machine learning models for pattern recognition
Real-time score updates based on changing conditions
Confidence interval calculation and uncertainty quantification
Historical performance tracking and model validation
Machine Learning Architecture
Model Ensemble Framework
from sklearn.ensemble import RandomForestClassifier, GradientBoostingRegressor
from xgboost import XGBClassifier
from tensorflow import keras
import numpy as np
class ScoringEnsemble:
def __init__(self):
self.models = {
"honeypot_detector": {
"model": XGBClassifier(
n_estimators=100,
max_depth=6,
learning_rate=0.1,
random_state=42
),
"weight": 0.25,
"confidence_threshold": 0.8
},
"rug_pull_predictor": {
"model": GradientBoostingRegressor(
n_estimators=150,
max_depth=5,
learning_rate=0.05
),
"weight": 0.30,
"confidence_threshold": 0.75
},
"liquidity_analyzer": {
"model": RandomForestClassifier(
n_estimators=200,
max_depth=8,
min_samples_split=5
),
"weight": 0.20,
"confidence_threshold": 0.7
},
"social_sentiment_nn": {
"model": self.build_neural_network(),
"weight": 0.15,
"confidence_threshold": 0.65
},
"whale_behavior_lstm": {
"model": self.build_lstm_model(),
"weight": 0.10,
"confidence_threshold": 0.6
}
}
def build_neural_network(self):
model = keras.Sequential([
keras.layers.Dense(128, activation='relu', input_shape=(50,)),
keras.layers.Dropout(0.3),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dropout(0.2),
keras.layers.Dense(32, activation='relu'),
keras.layers.Dense(1, activation='sigmoid')
])
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'precision', 'recall']
)
return model
Feature Engineering Pipeline
class FeatureEngineer:
def __init__(self):
self.feature_extractors = {
"contract_features": ContractFeatureExtractor(),
"economic_features": EconomicFeatureExtractor(),
"social_features": SocialFeatureExtractor(),
"behavioral_features": BehaviorFeatureExtractor()
}
def extract_features(self, project_data: Dict) -> np.ndarray:
feature_vectors = []
# Contract-based features
contract_features = self.extract_contract_features(project_data)
feature_vectors.extend(contract_features)
# Economic features
economic_features = self.extract_economic_features(project_data)
feature_vectors.extend(economic_features)
# Social features
social_features = self.extract_social_features(project_data)
feature_vectors.extend(social_features)
# Behavioral features
behavioral_features = self.extract_behavioral_features(project_data)
feature_vectors.extend(behavioral_features)
return np.array(feature_vectors)
def extract_contract_features(self, data: Dict) -> List[float]:
return [
float(data.get("is_verified", 0)),
float(data.get("has_proxy", 0)),
float(data.get("is_mintable", 0)),
float(data.get("is_pausable", 0)),
float(data.get("owner_renounced", 0)),
data.get("audit_score", 0.0) / 100.0,
min(data.get("function_count", 100) / 100.0, 1.0),
data.get("complexity_score", 0.0) / 100.0
]
def extract_economic_features(self, data: Dict) -> List[float]:
return [
min(data.get("liquidity_locked_months", 0) / 12.0, 1.0),
data.get("initial_liquidity_ratio", 0.0),
min(data.get("holder_count", 1000) / 1000.0, 1.0),
data.get("top_10_holder_percentage", 100.0) / 100.0,
data.get("trading_volume_24h", 0.0) / 1000000.0, # Normalized to millions
float(data.get("has_trading_fees", 0)),
data.get("market_cap", 0.0) / 10000000.0 # Normalized to 10M
]
Risk Assessment Framework
Multi-Dimensional Risk Calculation
interface RiskFactors {
technical: TechnicalRisk;
economic: EconomicRisk;
social: SocialRisk;
governance: GovernanceRisk;
}
interface TechnicalRisk {
contractVerification: number;
auditStatus: number;
codeComplexity: number;
upgradeability: number;
honeypotRisk: number;
}
class RiskCalculator {
calculateKaizenScore(data: ProjectData): ScoringResult {
const riskFactors = this.assessRiskFactors(data);
const mlPredictions = this.getMachineLearningPredictions(data);
const confidence = this.calculateConfidence(data, mlPredictions);
// Weighted risk calculation
const technicalScore = this.calculateTechnicalScore(riskFactors.technical);
const economicScore = this.calculateEconomicScore(riskFactors.economic);
const socialScore = this.calculateSocialScore(riskFactors.social);
const governanceScore = this.calculateGovernanceScore(riskFactors.governance);
// Apply machine learning adjustments
const mlAdjustment = this.calculateMLAdjustment(mlPredictions);
const rawScore = (
technicalScore * 0.30 +
economicScore * 0.25 +
socialScore * 0.25 +
governanceScore * 0.20
);
const finalScore = Math.max(0, Math.min(100, rawScore + mlAdjustment));
return {
score: Math.round(finalScore),
confidence: confidence,
breakdown: {
technical: technicalScore,
economic: economicScore,
social: socialScore,
governance: governanceScore,
mlAdjustment: mlAdjustment
},
riskLevel: this.categorizeRisk(finalScore),
explanation: this.generateExplanation(riskFactors, mlPredictions)
};
}
private calculateTechnicalScore(technical: TechnicalRisk): number {
const factors = [
{ value: technical.contractVerification, weight: 0.25 },
{ value: technical.auditStatus, weight: 0.30 },
{ value: technical.codeComplexity, weight: 0.15 },
{ value: technical.upgradeability, weight: 0.15 },
{ value: (100 - technical.honeypotRisk), weight: 0.15 }
];
return factors.reduce((score, factor) =>
score + (factor.value * factor.weight), 0
);
}
}
Real-Time Score Updates
Event-Driven Score Recalculation
class RealTimeScorer:
def __init__(self):
self.score_cache = {}
self.update_thresholds = {
"liquidity_change": 0.05, # 5% change triggers update
"holder_change": 0.02, # 2% change triggers update
"social_spike": 2.0, # 2x normal activity
"whale_movement": 0.01 # 1% of supply moved
}
async def handle_blockchain_event(self, event: BlockchainEvent):
affected_projects = self.identify_affected_projects(event)
for project in affected_projects:
if self.should_update_score(project, event):
new_score = await self.recalculate_score(project)
await self.publish_score_update(project, new_score)
def should_update_score(self, project: str, event: BlockchainEvent) -> bool:
if event.type == "liquidity_change":
change_ratio = abs(event.new_value - event.old_value) / event.old_value
return change_ratio > self.update_thresholds["liquidity_change"]
elif event.type == "large_transfer":
supply_percentage = event.amount / project.total_supply
return supply_percentage > self.update_thresholds["whale_movement"]
elif event.type == "social_activity_spike":
activity_ratio = event.current_activity / event.baseline_activity
return activity_ratio > self.update_thresholds["social_spike"]
return False
async def recalculate_score(self, project: str) -> ScoringResult:
# Fetch latest data for all dimensions
latest_data = await self.data_aggregator.get_project_data(project)
# Recalculate with updated data
new_score = self.scoring_engine.calculate_score(latest_data)
# Update cache
self.score_cache[project] = new_score
return new_score
Model Training and Validation
Continuous Learning Pipeline
class ModelTrainer:
def __init__(self):
self.training_scheduler = TrainingScheduler()
self.validation_metrics = ValidationMetrics()
self.model_versioning = ModelVersioning()
async def retrain_models(self):
# Collect new training data
training_data = await self.collect_training_data()
validation_data = await self.collect_validation_data()
for model_name, model_config in self.models.items():
# Train new model version
new_model = await self.train_model(
model_name,
training_data,
model_config
)
# Validate performance
performance = await self.validate_model(
new_model,
validation_data
)
# Compare with current model
if self.is_improvement(performance, model_name):
await self.deploy_model(new_model, model_name)
await self.archive_old_model(model_name)
def collect_training_data(self) -> TrainingDataset:
# Collect data from past 30 days
end_date = datetime.now()
start_date = end_date - timedelta(days=30)
# Get projects with known outcomes
labeled_projects = self.get_labeled_projects(start_date, end_date)
training_features = []
training_labels = []
for project in labeled_projects:
features = self.feature_engineer.extract_features(project.data)
label = project.actual_outcome # 0 = scam, 1 = legitimate
training_features.append(features)
training_labels.append(label)
return TrainingDataset(
features=np.array(training_features),
labels=np.array(training_labels)
)
Social Intelligence Layer
Component Overview
The Social Intelligence Layer aggregates and analyzes social media data across multiple platforms to provide sentiment analysis, community health metrics, and manipulation detection. This component leverages advanced natural language processing and network analysis to identify authentic community engagement versus artificial hype and coordinated manipulation.
Key Capabilities:
Multi-platform social media monitoring (Twitter, Telegram, Discord, Farcaster)
Real-time sentiment analysis with context understanding
Influencer network mapping and impact assessment
Shill detection and coordinated manipulation identification
Viral content analysis and authenticity verification
Multi-Platform Data Aggregation
Platform Integration Architecture
interface SocialPlatform {
name: string;
apiClient: PlatformAPI;
rateLimits: RateLimit;
dataProcessor: PlatformProcessor;
}
class SocialAggregator {
private platforms: Map<string, SocialPlatform>;
private dataBuffer: SocialDataBuffer;
private processingQueue: ProcessingQueue;
constructor() {
this.platforms = new Map([
["twitter", new TwitterIntegration()],
["telegram", new TelegramIntegration()],
["discord", new DiscordIntegration()],
["farcaster", new FarcasterIntegration()]
]);
}
async collectSocialData(projectId: string, timeframe: number): Promise<SocialDataset> {
const dataPromises = Array.from(this.platforms.values()).map(platform =>
platform.collectData(projectId, timeframe)
);
const platformData = await Promise.allSettled(dataPromises);
const aggregatedData = this.aggregateData(platformData);
return this.processAggregatedData(aggregatedData);
}
private aggregateData(platformData: PromiseSettledResult<any>[]): RawSocialData {
const aggregated: RawSocialData = {
posts: [],
mentions: [],
engagement: {},
metadata: {}
};
platformData.forEach((result, index) => {
if (result.status === 'fulfilled') {
const platform = Array.from(this.platforms.keys())[index];
aggregated.posts.push(...result.value.posts);
aggregated.mentions.push(...result.value.mentions);
aggregated.engagement[platform] = result.value.engagement;
aggregated.metadata[platform] = result.value.metadata;
}
});
return aggregated;
}
}
Twitter Integration
import tweepy
from typing import List, Dict
import asyncio
class TwitterCollector:
def __init__(self, api_credentials: Dict[str, str]):
self.api = tweepy.Client(
bearer_token=api_credentials["bearer_token"],
consumer_key=api_credentials["consumer_key"],
consumer_secret=api_credentials["consumer_secret"],
access_token=api_credentials["access_token"],
access_token_secret=api_credentials["access_token_secret"]
)
async def collect_project_mentions(self, project_symbol: str, hours: int = 24) -> List[Dict]:
query = f"${project_symbol} OR #{project_symbol} -is:retweet lang:en"
tweets = tweepy.Paginator(
self.api.search_recent_tweets,
query=query,
tweet_fields=["created_at", "author_id", "public_metrics", "context_annotations"],
user_fields=["public_metrics", "verified", "created_at"],
expansions=["author_id"],
max_results=100
).flatten(limit=1000)
processed_tweets = []
for tweet in tweets:
processed_tweet = {
"id": tweet.id,
"text": tweet.text,
"created_at": tweet.created_at.isoformat(),
"author_id": tweet.author_id,
"metrics": {
"retweet_count": tweet.public_metrics["retweet_count"],
"like_count": tweet.public_metrics["like_count"],
"reply_count": tweet.public_metrics["reply_count"],
"quote_count": tweet.public_metrics["quote_count"]
},
"platform": "twitter"
}
processed_tweets.append(processed_tweet)
return processed_tweets
def analyze_user_authenticity(self, user_data: Dict) -> float:
"""Calculate user authenticity score (0-1)"""
factors = {
"account_age": min(user_data.get("account_age_days", 0) / 365, 1.0),
"follower_ratio": min(user_data.get("followers_count", 0) / max(user_data.get("following_count", 1), 1), 1.0),
"engagement_rate": user_data.get("avg_engagement_rate", 0.0),
"verified_status": 1.0 if user_data.get("verified", False) else 0.0,
"bio_completeness": 1.0 if user_data.get("description") else 0.0
}
weights = {
"account_age": 0.3,
"follower_ratio": 0.25,
"engagement_rate": 0.2,
"verified_status": 0.15,
"bio_completeness": 0.1
}
authenticity_score = sum(factors[factor] * weights[factor] for factor in factors)
return min(authenticity_score, 1.0)
Natural Language Processing Pipeline
Sentiment Analysis Engine
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
from textblob import TextBlob
import re
class SentimentAnalyzer:
def __init__(self):
# Initialize multiple models for ensemble analysis
self.models = {
"crypto_bert": pipeline(
"sentiment-analysis",
model="ElKulako/cryptobert",
tokenizer="ElKulako/cryptobert"
),
"finbert": pipeline(
"sentiment-analysis",
model="ProsusAI/finbert",
tokenizer="ProsusAI/finbert"
),
"general_sentiment": pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment"
)
}
self.crypto_lexicon = self.load_crypto_lexicon()
def analyze_sentiment(self, text: str) -> Dict[str, float]:
# Preprocess text
cleaned_text = self.preprocess_text(text)
# Get predictions from each model
sentiments = {}
for model_name, model in self.models.items():
try:
result = model(cleaned_text)[0]
sentiments[model_name] = {
"label": result["label"],
"score": result["score"]
}
except Exception as e:
print(f"Error with {model_name}: {e}")
sentiments[model_name] = {"label": "NEUTRAL", "score": 0.5}
# Apply crypto-specific adjustments
crypto_sentiment = self.analyze_crypto_sentiment(cleaned_text)
# Ensemble prediction
final_sentiment = self.ensemble_sentiment(sentiments, crypto_sentiment)
return final_sentiment
def preprocess_text(self, text: str) -> str:
# Remove URLs
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
# Remove user mentions and hashtags for sentiment (keep for other analysis)
text = re.sub(r'@\w+|#\w+', '', text)
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def analyze_crypto_sentiment(self, text: str) -> Dict[str, float]:
positive_indicators = [
"moon", "bullish", "pump", "gem", "diamond hands", "hodl",
"100x", "to the moon", "buy the dip", "strong community"
]
negative_indicators = [
"rug pull", "scam", "dump", "exit scam", "honeypot",
"paper hands", "dead project", "abandoned", "suspicious"
]
text_lower = text.lower()
positive_count = sum(1 for indicator in positive_indicators if indicator in text_lower)
negative_count = sum(1 for indicator in negative_indicators if indicator in text_lower)
if positive_count > negative_count:
return {"label": "POSITIVE", "score": min(0.7 + (positive_count * 0.1), 1.0)}
elif negative_count > positive_count:
return {"label": "NEGATIVE", "score": min(0.7 + (negative_count * 0.1), 1.0)}
else:
return {"label": "NEUTRAL", "score": 0.5}
Entity Recognition and Context Analysis
import spacy
from spacy import displacy
import networkx as nx
class EntityAnalyzer:
def __init__(self):
self.nlp = spacy.load("en_core_web_lg")
# Add crypto-specific entity patterns
ruler = self.nlp.add_pipe("entity_ruler", before="ner")
patterns = [
{"label": "CRYPTO_TOKEN", "pattern": [{"TEXT": {"REGEX": r"^\$[A-Z]{2,10}$"}}]},
{"label": "WALLET_ADDRESS", "pattern": [{"TEXT": {"REGEX": r"^0x[a-fA-F0-9]{40}$"}}]},
{"label": "CONTRACT_ADDRESS", "pattern": [{"TEXT": {"REGEX": r"^0x[a-fA-F0-9]{40}$"}}]}
]
ruler.add_patterns(patterns)
def extract_entities(self, text: str) -> Dict[str, List[str]]:
doc = self.nlp(text)
entities = {
"tokens": [],
"wallets": [],
"contracts": [],
"people": [],
"organizations": [],
"locations": []
}
for ent in doc.ents:
if ent.label_ == "CRYPTO_TOKEN":
entities["tokens"].append(ent.text)
elif ent.label_ == "WALLET_ADDRESS":
entities["wallets"].append(ent.text)
elif ent.label_ == "CONTRACT_ADDRESS":
entities["contracts"].append(ent.text)
elif ent.label_ == "PERSON":
entities["people"].append(ent.text)
elif ent.label_ == "ORG":
entities["organizations"].append(ent.text)
elif ent.label_ in ["GPE", "LOC"]:
entities["locations"].append(ent.text)
return entities
def build_entity_network(self, social_data: List[Dict]) -> nx.Graph:
G = nx.Graph()
for post in social_data:
entities = self.extract_entities(post["text"])
author = post["author_id"]
# Add author node
G.add_node(author, type="user")
# Add entity nodes and relationships
for entity_type, entity_list in entities.items():
for entity in entity_list:
G.add_node(entity, type=entity_type)
G.add_edge(author, entity, weight=1, post_id=post["id"])
return G
Manipulation Detection
Coordinated Behavior Analysis
import pandas as pd
from sklearn.cluster import DBSCAN
from datetime import datetime, timedelta
import numpy as np
class ManipulationDetector:
def __init__(self):
self.suspicious_patterns = {
"temporal_clustering": {"window": 300, "min_posts": 10}, # 5 minutes
"content_similarity": {"threshold": 0.8},
"account_similarity": {"threshold": 0.7},
"engagement_anomaly": {"multiplier": 3.0}
}
def detect_shill_campaigns(self, social_data: List[Dict]) -> Dict[str, any]:
df = pd.DataFrame(social_data)
# Convert timestamps
df['timestamp'] = pd.to_datetime(df['created_at'])
df = df.sort_values('timestamp')
# Detect temporal clustering
temporal_clusters = self.detect_temporal_clustering(df)
# Detect content similarity
content_clusters = self.detect_content_similarity(df)
# Detect account coordination
account_clusters = self.detect_account_coordination(df)
# Combine detections
manipulation_score = self.calculate_manipulation_score(
temporal_clusters, content_clusters, account_clusters
)
return {
"manipulation_score": manipulation_score,
"temporal_clusters": temporal_clusters,
"content_clusters": content_clusters,
"account_clusters": account_clusters,
"suspicious_activity": manipulation_score > 0.6
}
def detect_temporal_clustering(self, df: pd.DataFrame) -> List[Dict]:
clusters = []
window = timedelta(seconds=self.suspicious_patterns["temporal_clustering"]["window"])
min_posts = self.suspicious_patterns["temporal_clustering"]["min_posts"]
for i in range(len(df)):
current_time = df.iloc[i]['timestamp']
window_end = current_time + window
# Count posts in time window
window_posts = df[
(df['timestamp'] >= current_time) &
(df['timestamp'] <= window_end)
]
if len(window_posts) >= min_posts:
clusters.append({
"start_time": current_time.isoformat(),
"end_time": window_end.isoformat(),
"post_count": len(window_posts),
"unique_authors": window_posts['author_id'].nunique(),
"posts": window_posts['id'].tolist()
})
return clusters
def detect_content_similarity(self, df: pd.DataFrame) -> List[Dict]:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Vectorize text content
vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
text_vectors = vectorizer.fit_transform(df['text'])
# Calculate similarity matrix
similarity_matrix = cosine_similarity(text_vectors)
# Find highly similar content
threshold = self.suspicious_patterns["content_similarity"]["threshold"]
similar_pairs = []
for i in range(len(similarity_matrix)):
for j in range(i + 1, len(similarity_matrix)):
if similarity_matrix[i][j] > threshold:
similar_pairs.append({
"post1_id": df.iloc[i]['id'],
"post2_id": df.iloc[j]['id'],
"similarity": similarity_matrix[i][j],
"author1": df.iloc[i]['author_id'],
"author2": df.iloc[j]['author_id']
})
return similar_pairs
Performance Monitoring
Real-Time Analytics Dashboard
class SocialAnalyticsDashboard:
def __init__(self):
self.metrics = {
"processing_latency": [],
"sentiment_accuracy": [],
"manipulation_detection_rate": [],
"platform_availability": {}
}
async def update_metrics(self):
while True:
# Collect performance metrics
latency = await self.measure_processing_latency()
self.metrics["processing_latency"].append(latency)
# Update platform availability
for platform in self.platforms:
availability = await self.check_platform_availability(platform)
self.metrics["platform_availability"][platform] = availability
# Calculate sentiment accuracy (when ground truth available)
accuracy = await self.calculate_sentiment_accuracy()
if accuracy:
self.metrics["sentiment_accuracy"].append(accuracy)
await asyncio.sleep(60) # Update every minute
def generate_performance_report(self) -> Dict[str, any]:
return {
"avg_processing_latency": np.mean(self.metrics["processing_latency"][-100:]),
"platform_uptime": {
platform: np.mean(status_list[-60:])
for platform, status_list in self.metrics["platform_availability"].items()
},
"sentiment_accuracy": np.mean(self.metrics["sentiment_accuracy"][-50:]) if self.metrics["sentiment_accuracy"] else None,
"total_posts_processed": len(self.metrics["processing_latency"]),
"system_health": self.calculate_system_health()
}
Intelligence Aggregation Module
Component Overview
The Intelligence Aggregation Module serves as the central hub for correlating and synthesizing intelligence data from multiple sources, including on-chain analysis, external intelligence providers, and behavioral pattern recognition. This component transforms raw intelligence into actionable insights through advanced correlation algorithms and risk pattern matching.
Core Functions:
Multi-source intelligence correlation and validation
Wallet attribution and entity resolution
Fund flow tracking and suspicious activity detection
Risk pattern recognition and threat intelligence
Historical analysis and predictive modeling
Intelligence Fusion Architecture
Data Source Integration
from typing import Dict, List, Optional
from dataclasses import dataclass
from enum import Enum
class IntelligenceSource(Enum):
ARKHAM = "arkham_intelligence"
CHAINALYSIS = "chainalysis"
ONCHAIN_ANALYSIS = "onchain_internal"
SOCIAL_INTELLIGENCE = "social_internal"
COMMUNITY_REPORTS = "community_reports"
@dataclass
class IntelligenceRecord:
source: IntelligenceSource
entity_id: str
entity_type: str
confidence: float
timestamp: datetime
data: Dict[str, any]
correlation_ids: List[str]
class IntelligenceFusion:
def __init__(self):
self.sources = {
IntelligenceSource.ARKHAM: ArkhamConnector(),
IntelligenceSource.CHAINALYSIS: ChainanalysisConnector(),
IntelligenceSource.ONCHAIN_ANALYSIS: OnChainAnalyzer(),
IntelligenceSource.SOCIAL_INTELLIGENCE: SocialAnalyzer(),
IntelligenceSource.COMMUNITY_REPORTS: CommunityReports()
}
self.correlation_engine = CorrelationEngine()
self.entity_resolver = EntityResolver()
async def aggregate_intelligence(self, entity_id: str) -> IntelligenceProfile:
intelligence_records = []
# Collect data from all sources
for source, connector in self.sources.items():
try:
records = await connector.get_intelligence(entity_id)
intelligence_records.extend(records)
except Exception as e:
logger.warning(f"Failed to collect from {source}: {e}")
# Correlate and validate information
correlated_intelligence = self.correlation_engine.correlate(intelligence_records)
# Resolve entity relationships
entity_profile = self.entity_resolver.resolve(correlated_intelligence)
return entity_profile
Arkham Intelligence Integration
import aiohttp
import asyncio
from typing import Optional
class ArkhamConnector:
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.arkhamintelligence.com/v1"
self.session = None
async def get_entity_info(self, address: str) -> Optional[Dict]:
async with aiohttp.ClientSession() as session:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
url = f"{self.base_url}/entity/{address}"
async with session.get(url, headers=headers) as response:
if response.status == 200:
data = await response.json()
return self.process_arkham_data(data)
else:
logger.warning(f"Arkham API error: {response.status}")
return None
def process_arkham_data(self, raw_data: Dict) -> Dict:
return {
"entity_name": raw_data.get("entity", {}).get("name"),
"entity_type": raw_data.get("entity", {}).get("type"),
"risk_score": raw_data.get("risk_score", 0),
"labels": raw_data.get("labels", []),
"transactions": {
"total_volume": raw_data.get("total_volume"),
"transaction_count": raw_data.get("transaction_count"),
"first_seen": raw_data.get("first_transaction_date"),
"last_seen": raw_data.get("last_transaction_date")
},
"connections": raw_data.get("connected_entities", []),
"confidence": raw_data.get("confidence", 0.5)
}
async def track_fund_flows(self, address: str, depth: int = 2) -> Dict:
"""Track fund flows from a given address"""
flows = {"inbound": [], "outbound": [], "patterns": []}
# Get transaction history
transactions = await self.get_transaction_history(address)
for tx in transactions:
if tx["to"].lower() == address.lower():
flows["inbound"].append({
"from": tx["from"],
"amount": tx["value"],
"timestamp": tx["timestamp"],
"tx_hash": tx["hash"]
})
elif tx["from"].lower() == address.lower():
flows["outbound"].append({
"to": tx["to"],
"amount": tx["value"],
"timestamp": tx["timestamp"],
"tx_hash": tx["hash"]
})
# Analyze patterns
flows["patterns"] = self.analyze_flow_patterns(flows)
return flows
Entity Resolution and Attribution
Multi-Source Entity Correlation
from difflib import SequenceMatcher
import networkx as nx
class EntityResolver:
def __init__(self):
self.similarity_threshold = 0.85
self.confidence_weights = {
IntelligenceSource.ARKHAM: 0.9,
IntelligenceSource.CHAINALYSIS: 0.85,
IntelligenceSource.ONCHAIN_ANALYSIS: 0.7,
IntelligenceSource.SOCIAL_INTELLIGENCE: 0.6,
IntelligenceSource.COMMUNITY_REPORTS: 0.4
}
def resolve_entity(self, intelligence_records: List[IntelligenceRecord]) -> EntityProfile:
# Group records by entity similarity
entity_clusters = self.cluster_similar_entities(intelligence_records)
# Resolve each cluster to a single entity
resolved_entities = []
for cluster in entity_clusters:
resolved_entity = self.merge_entity_cluster(cluster)
resolved_entities.append(resolved_entity)
# Build entity relationship graph
relationship_graph = self.build_relationship_graph(resolved_entities)
return EntityProfile(
entities=resolved_entities,
relationships=relationship_graph,
confidence=self.calculate_overall_confidence(resolved_entities)
)
def cluster_similar_entities(self, records: List[IntelligenceRecord]) -> List[List[IntelligenceRecord]]:
clusters = []
processed = set()
for i, record in enumerate(records):
if i in processed:
continue
cluster = [record]
processed.add(i)
for j, other_record in enumerate(records[i+1:], i+1):
if j in processed:
continue
if self.entities_are_similar(record, other_record):
cluster.append(other_record)
processed.add(j)
clusters.append(cluster)
return clusters
def entities_are_similar(self, entity1: IntelligenceRecord, entity2: IntelligenceRecord) -> bool:
# Check address similarity
if entity1.entity_id == entity2.entity_id:
return True
# Check name similarity if available
name1 = entity1.data.get("entity_name", "")
name2 = entity2.data.get("entity_name", "")
if name1 and name2:
name_similarity = SequenceMatcher(None, name1.lower(), name2.lower()).ratio()
if name_similarity > self.similarity_threshold:
return True
# Check transaction pattern similarity
if self.transaction_patterns_similar(entity1, entity2):
return True
return False
def merge_entity_cluster(self, cluster: List[IntelligenceRecord]) -> ResolvedEntity:
# Weighted merge based on source confidence
merged_data = {}
total_confidence = 0
for record in cluster:
source_weight = self.confidence_weights[record.source]
record_confidence = record.confidence * source_weight
for key, value in record.data.items():
if key not in merged_data:
merged_data[key] = {"value": value, "confidence": record_confidence}
else:
# Weighted average for numerical values
if isinstance(value, (int, float)) and isinstance(merged_data[key]["value"], (int, float)):
current_weight = merged_data[key]["confidence"]
new_weight = record_confidence
total_weight = current_weight + new_weight
merged_data[key]["value"] = (
(merged_data[key]["value"] * current_weight + value * new_weight) / total_weight
)
merged_data[key]["confidence"] = total_weight
else:
# Keep highest confidence value for non-numerical data
if record_confidence > merged_data[key]["confidence"]:
merged_data[key] = {"value": value, "confidence": record_confidence}
return ResolvedEntity(
entity_id=cluster[0].entity_id,
merged_data=merged_data,
sources=[record.source for record in cluster],
overall_confidence=sum(record.confidence for record in cluster) / len(cluster)
)
Risk Pattern Recognition
Behavioral Pattern Analysis
import pandas as pd
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
import numpy as np
class RiskPatternRecognizer:
def __init__(self):
self.known_patterns = {
"mixer_usage": self.detect_mixer_usage,
"rapid_distribution": self.detect_rapid_distribution,
"circular_trading": self.detect_circular_trading,
"wash_trading": self.detect_wash_trading,
"pump_and_dump": self.detect_pump_and_dump,
"sybil_attack": self.detect_sybil_attack
}
self.anomaly_detector = IsolationForest(contamination=0.1, random_state=42)
self.scaler = StandardScaler()
def analyze_risk_patterns(self, entity_data: Dict) -> Dict[str, float]:
risk_scores = {}
# Run each pattern detection algorithm
for pattern_name, detector in self.known_patterns.items():
try:
score = detector(entity_data)
risk_scores[pattern_name] = score
except Exception as e:
logger.warning(f"Error detecting {pattern_name}: {e}")
risk_scores[pattern_name] = 0.0
# Machine learning anomaly detection
ml_anomaly_score = self.detect_ml_anomalies(entity_data)
risk_scores["ml_anomaly"] = ml_anomaly_score
# Calculate overall risk score
overall_risk = self.calculate_overall_risk(risk_scores)
risk_scores["overall_risk"] = overall_risk
return risk_scores
def detect_mixer_usage(self, entity_data: Dict) -> float:
"""Detect usage of known mixing services"""
known_mixers = [
"0x5e4e65926ba27467555eb562121fac00d24e9dd2", # Tornado Cash
"0xd90e2f925da726b50c4ed8d0fb90ad053324f31b", # Blender
# Add more known mixer addresses
]
transactions = entity_data.get("transactions", [])
mixer_interactions = 0
total_transactions = len(transactions)
if total_transactions == 0:
return 0.0
for tx in transactions:
if tx.get("to", "").lower() in [mixer.lower() for mixer in known_mixers]:
mixer_interactions += 1
if tx.get("from", "").lower() in [mixer.lower() for mixer in known_mixers]:
mixer_interactions += 1
mixer_ratio = mixer_interactions / total_transactions
return min(mixer_ratio * 2.0, 1.0) # Cap at 1.0
def detect_rapid_distribution(self, entity_data: Dict) -> float:
"""Detect rapid token distribution patterns"""
transactions = entity_data.get("transactions", [])
if len(transactions) < 10:
return 0.0
# Analyze transaction timing
timestamps = [tx.get("timestamp", 0) for tx in transactions]
timestamps.sort()
# Calculate distribution rate
time_span = timestamps[-1] - timestamps[0]
if time_span == 0:
return 1.0 # All transactions in same block is highly suspicious
avg_interval = time_span / len(transactions)
# Rapid distribution if average interval < 1 minute
if avg_interval < 60:
return min((60 - avg_interval) / 60, 1.0)
else:
return 0.0
def detect_circular_trading(self, entity_data: Dict) -> float:
"""Detect circular trading patterns"""
transactions = entity_data.get("transactions", [])
# Build transaction graph
G = nx.DiGraph()
for tx in transactions:
from_addr = tx.get("from", "").lower()
to_addr = tx.get("to", "").lower()
if from_addr and to_addr:
G.add_edge(from_addr, to_addr, **tx)
# Find cycles in the graph
try:
cycles = list(nx.simple_cycles(G))
cycle_count = len(cycles)
# Calculate cycle score
if cycle_count == 0:
return 0.0
else:
# Normalize by number of nodes
node_count = len(G.nodes())
cycle_ratio = cycle_count / max(node_count, 1)
return min(cycle_ratio, 1.0)
except Exception:
return 0.0
def detect_ml_anomalies(self, entity_data: Dict) -> float:
"""Use machine learning to detect anomalous patterns"""
features = self.extract_behavioral_features(entity_data)
if len(features) == 0:
return 0.0
# Normalize features
features_scaled = self.scaler.fit_transform([features])
# Predict anomaly
anomaly_score = self.anomaly_detector.decision_function(features_scaled)[0]
# Convert to 0-1 scale (more negative = more anomalous)
normalized_score = max(0, min(1, (-anomaly_score + 0.5) / 1.0))
return normalized_score
def extract_behavioral_features(self, entity_data: Dict) -> List[float]:
"""Extract numerical features for ML analysis"""
transactions = entity_data.get("transactions", [])
if not transactions:
return []
features = []
# Transaction volume features
amounts = [float(tx.get("amount", 0)) for tx in transactions]
features.extend([
np.mean(amounts),
np.std(amounts),
np.max(amounts),
np.min(amounts),
len(amounts)
])
# Timing features
timestamps = [tx.get("timestamp", 0) for tx in transactions]
time_diffs = np.diff(sorted(timestamps))
if len(time_diffs) > 0:
features.extend([
np.mean(time_diffs),
np.std(time_diffs),
np.max(time_diffs),
np.min(time_diffs)
])
else:
features.extend([0, 0, 0, 0])
# Network features
unique_counterparties = set()
for tx in transactions:
unique_counterparties.add(tx.get("from", ""))
unique_counterparties.add(tx.get("to", ""))
features.append(len(unique_counterparties))
return features
Chat Interface System
Component Overview
The Chat Interface System serves as the user-facing gateway to Kaizen AI's analytical capabilities, providing a conversational interface that can understand natural language queries, route requests to appropriate analytical agents, and present complex analysis results in an accessible format.
Core Capabilities:
Natural language understanding and intent classification
Context-aware conversation management
Multi-agent query routing and orchestration
Response generation with explanatory context
Real-time analysis streaming and interactive follow-ups
Natural Language Processing Architecture
Intent Classification and Query Routing
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import json
from typing import Dict, List, Tuple
from enum import Enum
class QueryIntent(Enum):
PROJECT_ANALYSIS = "project_analysis"
SECURITY_CHECK = "security_check"
COMPARISON = "comparison"
PORTFOLIO_REVIEW = "portfolio_review"
MARKET_SENTIMENT = "market_sentiment"
PRICE_PREDICTION = "price_prediction"
GENERAL_INFO = "general_info"
HELP = "help"
class IntentClassifier:
def __init__(self):
self.classifier = pipeline(
"text-classification",
model="microsoft/DialoGPT-medium",
tokenizer="microsoft/DialoGPT-medium"
)
self.intent_patterns = {
QueryIntent.PROJECT_ANALYSIS: [
"analyze", "check", "review", "examine", "evaluate",
"token", "project", "contract", "coin"
],
QueryIntent.SECURITY_CHECK: [
"safe", "scam", "honeypot", "rug pull", "security",
"legitimate", "trusted", "risk"
],
QueryIntent.COMPARISON: [
"compare", "versus", "vs", "difference", "better",
"between", "which"
],
QueryIntent.PORTFOLIO_REVIEW: [
"portfolio", "holdings", "positions", "my tokens",
"my coins", "wallet"
],
QueryIntent.MARKET_SENTIMENT: [
"sentiment", "opinion", "community", "social",
"feeling", "buzz", "discussion"
]
}
def classify_intent(self, query: str) -> Tuple[QueryIntent, float]:
# Convert query to lowercase for pattern matching
query_lower = query.lower()
# Score each intent based on keyword presence
intent_scores = {}
for intent, keywords in self.intent_patterns.items():
score = 0
for keyword in keywords:
if keyword in query_lower:
score += 1
# Normalize score
intent_scores[intent] = score / len(keywords)
# Get highest scoring intent
best_intent = max(intent_scores, key=intent_scores.get)
confidence = intent_scores[best_intent]
# Use ML model for additional validation
ml_result = self.classifier(query)[0]
# Combine rule-based and ML results
if confidence < 0.3: # Low confidence, rely more on ML
return self.map_ml_to_intent(ml_result), ml_result["score"]
else:
return best_intent, confidence
def extract_entities(self, query: str) -> Dict[str, List[str]]:
"""Extract relevant entities from the query"""
import re
entities = {
"tokens": [],
"addresses": [],
"amounts": [],
"timeframes": []
}
# Token symbols (e.g., $BTC, $ETH)
token_pattern = r'\$([A-Z]{2,10})'
entities["tokens"] = re.findall(token_pattern, query)
# Contract addresses
address_pattern = r'0x[a-fA-F0-9]{40}'
entities["addresses"] = re.findall(address_pattern, query)
# Amounts and numbers
amount_pattern = r'\$?(\d+(?:\.\d+)?(?:[kmb])?)'
entities["amounts"] = re.findall(amount_pattern, query.lower())
# Timeframes
timeframe_patterns = [
r'(\d+)\s*(hour|day|week|month|year)s?',
r'(last|past|next)\s*(hour|day|week|month|year)',
r'(today|yesterday|tomorrow)'
]
for pattern in timeframe_patterns:
matches = re.findall(pattern, query.lower())
entities["timeframes"].extend(matches)
return entities
Multi-LLM Response Generation
import openai
import anthropic
from mistralai.client import MistralClient
import asyncio
from typing import Optional
class ResponseGenerator:
def __init__(self, config: Dict[str, str]):
self.openai_client = openai.OpenAI(api_key=config["openai_key"])
self.anthropic_client = anthropic.Anthropic(api_key=config["anthropic_key"])
self.mistral_client = MistralClient(api_key=config["mistral_key"])
self.model_capabilities = {
"gpt-4": {
"strengths": ["complex_analysis", "detailed_explanations"],
"cost": "high",
"latency": "medium"
},
"claude-3": {
"strengths": ["technical_accuracy", "safety"],
"cost": "medium",
"latency": "low"
},
"mistral-large": {
"strengths": ["speed", "efficiency"],
"cost": "low",
"latency": "very_low"
}
}
async def generate_response(
self,
query: str,
context: Dict,
analysis_results: Dict
) -> str:
# Select appropriate model based on query complexity and context
selected_model = self.select_model(query, context)
# Prepare prompt with context and analysis results
prompt = self.build_prompt(query, context, analysis_results)
# Generate response using selected model
if selected_model == "gpt-4":
response = await self.generate_openai_response(prompt)
elif selected_model == "claude-3":
response = await self.generate_anthropic_response(prompt)
elif selected_model == "mistral-large":
response = await self.generate_mistral_response(prompt)
else:
response = "I'm sorry, I couldn't process your request."
return response
def select_model(self, query: str, context: Dict) -> str:
query_complexity = self.assess_query_complexity(query)
user_tier = context.get("user_tier", "free")
urgency = context.get("urgency", "normal")
if user_tier == "premium" and query_complexity == "high":
return "gpt-4"
elif urgency == "high" or query_complexity == "low":
return "mistral-large"
else:
return "claude-3"
def build_prompt(self, query: str, context: Dict, analysis_results: Dict) -> str:
system_prompt = """
You are Kaizen AI, an expert cryptocurrency analyst and security researcher.
Your role is to help users understand crypto projects, assess risks, and make informed decisions.
Always provide:
1. Clear, actionable insights
2. Risk assessments with confidence levels
3. Explanations of your reasoning
4. Specific recommendations when appropriate
Use the analysis results provided to give accurate, data-driven responses.
"""
context_info = f"""
User Context:
- Risk Tolerance: {context.get('risk_tolerance', 'unknown')}
- Experience Level: {context.get('experience_level', 'unknown')}
- Portfolio Value: {context.get('portfolio_value', 'unknown')}
Analysis Results:
{json.dumps(analysis_results, indent=2)}
"""
return f"{system_prompt}\n\n{context_info}\n\nUser Query: {query}\n\nResponse:"
async def generate_openai_response(self, prompt: str) -> str:
try:
response = await self.openai_client.chat.completions.acreate(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"OpenAI API error: {e}")
return "I encountered an error processing your request with advanced analysis."
async def generate_anthropic_response(self, prompt: str) -> str:
try:
response = await self.anthropic_client.messages.acreate(
model="claude-3-sonnet-20240229",
max_tokens=1000,
temperature=0.3,
messages=[{"role": "user", "content": prompt}]
)
return response.content[0].text
except Exception as e:
logger.error(f"Anthropic API error: {e}")
return "I encountered an error processing your request."
Context Management
Conversation State Management
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
import json
import redis
@dataclass
class ConversationContext:
session_id: str
user_id: str
conversation_history: List[Dict]
active_analysis: Optional[Dict]
user_preferences: Dict
last_updated: datetime
class ContextManager:
def __init__(self, redis_client: redis.Redis):
self.redis = redis_client
self.context_ttl = 3600 # 1 hour
async def get_context(self, session_id: str) -> Optional[ConversationContext]:
context_data = self.redis.get(f"context:{session_id}")
if context_data:
data = json.loads(context_data)
return ConversationContext(**data)
else:
return None
async def update_context(self, context: ConversationContext):
context.last_updated = datetime.now()
context_data = json.dumps(asdict(context), default=str)
self.redis.setex(
f"context:{context.session_id}",
self.context_ttl,
context_data
)
async def add_to_history(self, session_id: str, message: Dict):
context = await self.get_context(session_id)
if context:
context.conversation_history.append(message)
# Keep only last 20 messages to manage memory
if len(context.conversation_history) > 20:
context.conversation_history = context.conversation_history[-20:]
await self.update_context(context)
async def set_active_analysis(self, session_id: str, analysis: Dict):
context = await self.get_context(session_id)
if context:
context.active_analysis = analysis
await self.update_context(context)
Query Processing Pipeline
End-to-End Query Processing
class ChatProcessor:
def __init__(self):
self.intent_classifier = IntentClassifier()
self.context_manager = ContextManager()
self.response_generator = ResponseGenerator()
self.agent_orchestrator = AgentOrchestrator()
async def process_query(self, query: str, session_id: str) -> Dict[str, any]:
# Get conversation context
context = await self.context_manager.get_context(session_id)
if not context:
context = await self.create_new_context(session_id)
# Classify intent and extract entities
intent, confidence = self.intent_classifier.classify_intent(query)
entities = self.intent_classifier.extract_entities(query)
# Add query to conversation history
await self.context_manager.add_to_history(session_id, {
"type": "user_query",
"content": query,
"timestamp": datetime.now().isoformat(),
"intent": intent.value,
"entities": entities
})
# Route to appropriate agents for analysis
analysis_results = await self.route_to_agents(intent, entities, context)
# Generate response
response = await self.response_generator.generate_response(
query, asdict(context), analysis_results
)
# Add response to conversation history
await self.context_manager.add_to_history(session_id, {
"type": "ai_response",
"content": response,
"timestamp": datetime.now().isoformat(),
"analysis_results": analysis_results
})
return {
"response": response,
"intent": intent.value,
"confidence": confidence,
"entities": entities,
"analysis_results": analysis_results,
"suggestions": self.generate_suggestions(intent, entities)
}
async def route_to_agents(
self,
intent: QueryIntent,
entities: Dict,
context: ConversationContext
) -> Dict:
if intent == QueryIntent.PROJECT_ANALYSIS:
return await self.handle_project_analysis(entities, context)
elif intent == QueryIntent.SECURITY_CHECK:
return await self.handle_security_check(entities, context)
elif intent == QueryIntent.COMPARISON:
return await self.handle_comparison(entities, context)
elif intent == QueryIntent.PORTFOLIO_REVIEW:
return await self.handle_portfolio_review(entities, context)
elif intent == QueryIntent.MARKET_SENTIMENT:
return await self.handle_sentiment_analysis(entities, context)
else:
return {"error": "Intent not supported"}
async def handle_project_analysis(self, entities: Dict, context: ConversationContext) -> Dict:
# Extract target for analysis
target = None
if entities["tokens"]:
target = entities["tokens"][0]
elif entities["addresses"]:
target = entities["addresses"][0]
else:
return {"error": "No valid project identifier found"}
# Orchestrate multi-agent analysis
results = await self.agent_orchestrator.comprehensive_analysis(target)
# Store active analysis for follow-up queries
await self.context_manager.set_active_analysis(
context.session_id,
{"target": target, "results": results}
)
return results
def generate_suggestions(self, intent: QueryIntent, entities: Dict) -> List[str]:
suggestions = []
if intent == QueryIntent.PROJECT_ANALYSIS:
suggestions = [
"Check the security score",
"Analyze social sentiment",
"Compare with similar projects",
"Set up monitoring alerts"
]
elif intent == QueryIntent.SECURITY_CHECK:
suggestions = [
"Get detailed risk breakdown",
"Check for honeypot indicators",
"Analyze liquidity locks",
"Review audit status"
]
elif intent == QueryIntent.COMPARISON:
suggestions = [
"Add more projects to compare",
"Focus on specific metrics",
"Check historical performance",
"Analyze market correlations"
]
return suggestions
This comprehensive overview of Kaizen AI's core components provides the technical foundation necessary for understanding, implementing, and extending the platform's analytical capabilities across blockchain data collection, machine learning scoring, social intelligence, intelligence aggregation, and conversational AI interfaces.
Last updated