Chat Agent

Natural Language Understanding

Component Overview

The Chat Agent serves as Kaizen AI's intelligent conversational interface, responsible for understanding user queries, routing requests to appropriate analytical agents, and generating comprehensive, contextually-aware responses. This agent acts as the orchestration layer that transforms natural language input into actionable intelligence operations and presents complex analytical results in an accessible, conversational format.

Core Responsibilities:

  • Natural language processing and intent classification

  • Multi-agent query routing and orchestration

  • Context management and conversation state tracking

  • Multi-LLM integration for optimal response generation

  • Real-time streaming responses and interactive analysis

  • User session management and personalization

  • Response synthesis from multiple analytical sources

Architecture Philosophy: The Chat Agent employs a sophisticated natural language understanding pipeline combined with intelligent agent orchestration to provide users with seamless access to Kaizen AI's analytical capabilities. The system prioritizes accuracy, context awareness, and user experience while maintaining the technical depth required for professional crypto analysis.

Natural Language Processing Pipeline

Advanced NLP Architecture

// Core interfaces for natural language understanding
interface NLUPipeline {
  preprocess(input: string): Promise<PreprocessedInput>;
  classifyIntent(input: PreprocessedInput): Promise<IntentClassification>;
  extractEntities(input: PreprocessedInput): Promise<EntityExtractionResult>;
  analyzeContext(input: PreprocessedInput, session: ChatSession): Promise<ContextAnalysis>;
  validateQuery(intent: IntentClassification, entities: EntityExtractionResult): Promise<QueryValidation>;
}

interface ChatQueryProcessor {
  sessionId: string;
  userId: string;
  processQuery(query: string): Promise<ChatResponse>;
  streamResponse(query: string): AsyncGenerator<ChatStreamChunk>;
  handleFollowUp(query: string, context: ConversationContext): Promise<ChatResponse>;
}

export class ChatOrchestrator {
  private nluPipeline: NLUPipeline;
  private intentRouter: IntentRouter;
  private agentCoordinator: AgentCoordinator;
  private contextManager: ConversationContextManager;
  private responseGenerator: ResponseGenerator;
  private sessionManager: SessionManager;
  private analyticsTracker: ChatAnalyticsTracker;

  constructor(
    private config: ChatConfig,
    private agentRegistry: AgentRegistry,
    private llmProvider: LLMProvider,
    private database: DatabaseInterface,
    private cache: CacheInterface
  ) {
    this.nluPipeline = new NLUPipeline(config.nlu);
    this.intentRouter = new IntentRouter(config.routing);
    this.agentCoordinator = new AgentCoordinator(agentRegistry);
    this.contextManager = new ConversationContextManager(config.context);
    this.responseGenerator = new ResponseGenerator(llmProvider, config.response);
    this.sessionManager = new SessionManager(database, cache);
    this.analyticsTracker = new ChatAnalyticsTracker(config.analytics);
    
    this.setupRealTimeCapabilities();
  }

  async processUserQuery(
    sessionId: string,
    userId: string,
    query: string,
    metadata?: QueryMetadata
  ): Promise<ChatResponse> {
    const startTime = Date.now();
    
    try {
      // Get or create session
      const session = await this.sessionManager.getOrCreateSession(sessionId, userId);
      
      // Update session with new query
      await this.sessionManager.addMessage(sessionId, {
        type: 'user',
        content: query,
        timestamp: new Date(),
        metadata
      });

      // Process through NLP pipeline
      const nluResult = await this.processNLP(query, session);
      
      // Route to appropriate agents
      const agentResponse = await this.routeToAgents(nluResult, session);
      
      // Generate conversational response
      const response = await this.generateResponse(nluResult, agentResponse, session);
      
      // Update session with response
      await this.sessionManager.addMessage(sessionId, {
        type: 'assistant',
        content: response.content,
        timestamp: new Date(),
        analyticalData: agentResponse,
        confidence: response.confidence
      });

      // Track analytics
      this.analyticsTracker.trackQuery({
        sessionId,
        userId,
        query,
        intent: nluResult.intent,
        processingTime: Date.now() - startTime,
        agentsInvolved: agentResponse.agentsUsed,
        responseType: response.type
      });

      return response;

    } catch (error) {
      logger.error('Chat query processing failed:', error);
      
      // Generate error response
      const errorResponse = await this.generateErrorResponse(query, error);
      
      await this.sessionManager.addMessage(sessionId, {
        type: 'assistant',
        content: errorResponse.content,
        timestamp: new Date(),
        isError: true
      });

      return errorResponse;
    }
  }

  private async processNLP(query: string, session: ChatSession): Promise<NLUResult> {
    // Preprocess input
    const preprocessed = await this.nluPipeline.preprocess(query);
    
    // Classify intent
    const intentClassification = await this.nluPipeline.classifyIntent(preprocessed);
    
    // Extract entities
    const entities = await this.nluPipeline.extractEntities(preprocessed);
    
    // Analyze context from conversation history
    const contextAnalysis = await this.nluPipeline.analyzeContext(preprocessed, session);
    
    // Validate query completeness
    const validation = await this.nluPipeline.validateQuery(intentClassification, entities);

    return {
      originalQuery: query,
      preprocessed,
      intent: intentClassification,
      entities,
      context: contextAnalysis,
      validation,
      confidence: this.calculateNLUConfidence(intentClassification, entities, validation)
    };
  }
}

Intent Classification System

Advanced Intent Recognition

Entity Extraction Engine

Crypto-Specific Entity Recognition

Multi-LLM Integration

Advanced Language Model Orchestration

Context Management System

Advanced Conversation Context Tracking

Real-Time Chat Capabilities

WebSocket Integration and Streaming

This comprehensive Chat Agent documentation provides the technical foundation for understanding and implementing sophisticated conversational AI capabilities that serve as the user-facing interface for Kaizen AI's analytical platform.

Last updated