Scoring Agent

Scoring Algorithm Overview

Component Architecture

The Scoring Agent represents the analytical core of Kaizen AI, responsible for transforming multi-dimensional project data into actionable risk assessments through the proprietary Kaizen Score (0-100). This agent employs a sophisticated hybrid approach that combines rule-based logic with advanced machine learning models to deliver accurate, real-time risk evaluations for cryptocurrency projects.

Core Responsibilities:

  • Multi-factor risk assessment across technical, economic, social, and governance dimensions

  • Real-time score calculation and updates based on changing project conditions

  • Machine learning model ensemble management and optimization

  • Historical pattern recognition and predictive analytics

  • Confidence interval calculation and uncertainty quantification

  • Dynamic threshold adjustment based on market conditions

Scoring Philosophy: The Kaizen Score reflects the principle of continuous improvement by adapting to evolving threat patterns and market dynamics. The scoring system prioritizes transparency, reproducibility, and actionable insights, ensuring users understand both the score rationale and the confidence level of each assessment.

Scoring Framework Architecture

Multi-Dimensional Scoring Model

// Core scoring interfaces and architecture
interface ScoringDimension {
  readonly name: string;
  readonly weight: number;
  readonly factors: ScoringFactor[];
  calculate(data: ProjectData): Promise<DimensionScore>;
}

interface ScoringFactor {
  readonly id: string;
  readonly name: string;
  readonly weight: number;
  readonly type: 'binary' | 'continuous' | 'categorical';
  readonly validator: FactorValidator;
  evaluate(data: ProjectData): Promise<FactorResult>;
}

interface KaizenScore {
  readonly score: number; // 0-100
  readonly confidence: number; // 0-1
  readonly riskLevel: RiskLevel;
  readonly breakdown: ScoreBreakdown;
  readonly alerts: Alert[];
  readonly metadata: ScoringMetadata;
}

export class ScoringEngine {
  private dimensions: Map<string, ScoringDimension> = new Map();
  private mlModels: MLModelEnsemble;
  private ruleEngine: RuleEngine;
  private scoreCache: ScoringCache;
  private performanceTracker: PerformanceTracker;

  constructor(
    private config: ScoringConfig,
    private dataSource: DataSourceInterface,
    private modelRegistry: ModelRegistry
  ) {
    this.mlModels = new MLModelEnsemble(config.models);
    this.ruleEngine = new RuleEngine(config.rules);
    this.scoreCache = new ScoringCache(config.cache);
    this.performanceTracker = new PerformanceTracker();
    
    this.initializeDimensions();
    this.loadModels();
  }

  private initializeDimensions() {
    // Technical Security Dimension (30% weight)
    this.dimensions.set('technical', new TechnicalSecurityDimension({
      weight: 0.30,
      factors: [
        new ContractVerificationFactor(0.25),
        new AuditStatusFactor(0.30),
        new OwnershipAnalysisFactor(0.20),
        new HoneypotDetectionFactor(0.15),
        new CodeComplexityFactor(0.10)
      ]
    }));

    // Economic Health Dimension (25% weight)
    this.dimensions.set('economic', new EconomicHealthDimension({
      weight: 0.25,
      factors: [
        new LiquidityAnalysisFactor(0.30),
        new TokenDistributionFactor(0.25),
        new MarketCapAnalysisFactor(0.20),
        new TradingVolumeStabilityFactor(0.15),
        new HolderAnalysisFactor(0.10)
      ]
    }));

    // Social Intelligence Dimension (25% weight)
    this.dimensions.set('social', new SocialIntelligenceDimension({
      weight: 0.25,
      factors: [
        new CommunityHealthFactor(0.30),
        new SentimentAnalysisFactor(0.25),
        new InfluencerActivityFactor(0.20),
        new ManipulationDetectionFactor(0.15),
        new EngagementAuthenticityFactor(0.10)
      ]
    }));

    // Governance Dimension (20% weight)
    this.dimensions.set('governance', new GovernanceDimension({
      weight: 0.20,
      factors: [
        new DecentralizationMeasureFactor(0.35),
        new TeamTransparencyFactor(0.25),
        new RoadmapExecutionFactor(0.20),
        new ComplianceStatusFactor(0.20)
      ]
    }));
  }

  async calculateScore(projectData: ProjectData): Promise<KaizenScore> {
    const startTime = Date.now();
    
    try {
      // Check cache first
      const cacheKey = this.generateCacheKey(projectData);
      const cachedScore = await this.scoreCache.get(cacheKey);
      
      if (cachedScore && this.isCacheValid(cachedScore, projectData)) {
        return cachedScore;
      }

      // Calculate dimension scores in parallel
      const dimensionPromises = Array.from(this.dimensions.values()).map(async dimension => {
        const score = await dimension.calculate(projectData);
        return { dimension: dimension.name, score };
      });

      const dimensionResults = await Promise.all(dimensionPromises);

      // Apply machine learning adjustments
      const mlAdjustments = await this.mlModels.predict(projectData, dimensionResults);

      // Calculate final score
      const finalScore = this.calculateFinalScore(dimensionResults, mlAdjustments);

      // Generate alerts based on rules
      const alerts = await this.ruleEngine.evaluateAlerts(projectData, finalScore);

      // Calculate confidence level
      const confidence = this.calculateConfidence(projectData, dimensionResults, mlAdjustments);

      const kaizenScore: KaizenScore = {
        score: Math.round(finalScore.weightedScore),
        confidence,
        riskLevel: this.determineRiskLevel(finalScore.weightedScore),
        breakdown: finalScore.breakdown,
        alerts,
        metadata: {
          calculatedAt: new Date().toISOString(),
          processingTime: Date.now() - startTime,
          dataQuality: projectData.qualityScore || 0.8,
          modelVersions: this.mlModels.getVersions(),
          cacheKey
        }
      };

      // Cache the result
      await this.scoreCache.set(cacheKey, kaizenScore);

      // Track performance
      this.performanceTracker.recordScoring({
        processingTime: Date.now() - startTime,
        score: kaizenScore.score,
        confidence: kaizenScore.confidence,
        alertCount: alerts.length
      });

      return kaizenScore;

    } catch (error) {
      logger.error('Scoring calculation failed:', error, { projectData });
      throw new ScoringError('Failed to calculate Kaizen Score', error);
    }
  }
}

Technical Security Dimension

Contract Security Analysis

Machine Learning Models

Ensemble Model Implementation

Pattern Recognition

Advanced Pattern Detection System

Real-Time Score Updates

Dynamic Score Recalculation System

This comprehensive Scoring Agent documentation provides the technical foundation for understanding and implementing the sophisticated risk assessment system that generates Kaizen AI's signature 0-100 scores through advanced machine learning and rule-based analysis.

Last updated